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SUMMARY

The present work is devoted to the study on unsteady �ows of two immiscible viscous �uids separated
by free moving interface. Our goal is to elaborate a uni�ed strategy for numerical modelling of two-
�uid interfacial �ows, having in mind possible interface topology changes (like merger or break-up) and
realistically wide ranges for physical parameters of the problem. The proposed computational approach
essentially relies on three basic components: the �nite element method for spatial approximation, the
operator-splitting for temporal discretization and the level-set method for interface representation. We
show that the �nite element implementation of the level-set approach brings some additional bene�ts as
compared to the standard, �nite di�erence level-set realizations. In particular, the use of �nite elements
permits to localize the interface precisely, without introducing any arti�cial parameters like the interface
thickness; it also allows to maintain the second-order accuracy of the interface normal, curvature and
mass conservation. The operator-splitting makes it possible to separate all major di�culties of the
problem and enables us to implement the equal-order interpolation for the velocity and pressure. Diverse
numerical examples including simulations of bubble dynamics, bifurcating jet �ow and Rayleigh–Taylor
instability are presented to validate the computational method. Copyright ? 2004 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Fluid �ows with free moving surfaces or interfaces can be roughly divided into four general
classes: bubbles=drops, jets, waves and �lms. Each class encompasses a large number of
real-life physical phenomena having a great importance in diverse industrial applications. For
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232 A. SMOLIANSKI

example, bubble dynamics is of particular interest for chemical engineering, as bubbly �ows
are the core of bubble column chemical reactors; propulsion of liquid–metal jets constitutes
the main part of metal forming processes; ocean waves are under thorough investigation in
marine and coastal engineering, and liquid �lm �ows are frequently encountered in coating
and drying processes during paper or polymer production. It is worth noting that all the above-
mentioned classes of �uid �ows are, in essence, two-�uid �ows, since even in the case when
the second �uid is a gas (e.g. air) its dynamics cannot be neglected, with only few exceptions.
Thus, in general, we have to deal with the �ows of two immiscible �uids separated by their
natural interface rather than with one-liquid free-surface �ows.
There is a vast amount of literature devoted to numerical methods for free surface=interface

�uid �ows. As the comprehensive overviews containing a large number of references we
would mention the papers [1–3], and the book [4].
Without loss of generality, the most popular way of classifying the numerical algorithms

for �uid �ows is to divide them into Eulerian, Lagrangian and mixed Eulerian–Lagrangian.
Eulerian methods are characterized by a co-ordinate system that is stationary in the laboratory
frame of reference. The �uid travels between di�erent computational cells, in contrast to the
Lagrangian methods, where each computational cell always contains the same �uid elements.
Thus, Lagrangian methods are characterized by a co-ordinate system that moves with the �uid.
The mixed Eulerian–Lagrangian methods rely on both Lagrangian and Eulerian concepts. This
classi�cation is very reasonable to describe the way of modelling the �uid �ow, but does not
contain any information on the approaches to modelling the interface motion. In this respect,
there exists another commonly used classi�cation which treats all methods as either interface-
tracking or interface-capturing. In the interface-tracking method the interface (free surface) is
explicitly tracked along the trajectories of �uid particles in purely Lagrangian manner, which
gives rise to the frequent use of interface-tracking in combination with Lagrangian or with
mixed Eulerian–Lagrangian methods. The interface-capturing method is characterized by a
reconstruction of the interface from the properties of appropriate �eld variables, e.g. �uid
fraction or density. The latter classi�cation clari�es the geometrical part of interfacial-�ow
modelling, i.e. the issues related to the interface motion. Finally, the way of coupling of the
�ow and the free moving interface can be ‘segregated’ or ‘integrated’: in segregated approach
the �ow is �rst computed with the ‘frozen’ interface and, then, a new position of the interface
is found using the last computed �ow variables; in integrated approach the �ow variables and
new interface position are sought simultaneously.
To summarize, we may say that any computational method for free-surface �ows consists

of the following main ingredients:

(1) �ow modelling (Eulerian, Lagrangian, mixed Eulerian–Lagrangian),
(2) interface modelling (tracking, capturing),
(3) �ow–interface coupling (integrated, segregated).

The Lagrangian methods are naturally combined with the interface-tracking and the segre-
gated �ow-interface treatment. The strictly Lagrangian algorithm was used in Reference [5]
together with the �nite-volume and in Reference [6] with the �nite-element method. In Refer-
ences [7, 8] the free Lagrangian method with remeshing=rezoning was employed, the meshless
particulate Lagrangian approach was advocated in References [9, 10] (the smoothed particle
hydrodynamics (SPH) method) and the Boltzmann lattice–gas algorithm was addressed in
Reference [11].
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One of the most cited early papers within the Eulerian–Lagrangian framework is Hirt
et al. [12], where the algorithm called ALE (arbitrary-Lagrangian–Eulerian) was proposed.
In this algorithm, the mesh is rearranged in the vicinity of the interface by letting the mesh
nodes move with respect to the �uid in a prescribed manner; away from the interface the
grid is kept �xed. The advective velocity is correspondingly corrected to take into account
the grid motion, and the interface is tracked by following the Lagrangian motion of vertices
aligned initially with the interface. The �exibility in dealing with the motion of mesh ver-
tices makes the ALE-type methods very attractive for free-surface �ow simulations, and the
algorithms of this type were successfully used in References [13–18]. All these works relied
on the �nite-element method and on the segregated treatment of �ow–interface coupling. The
ALE methodology was exploited also in Reference [19] and in Reference [20], where the
space–time �nite-element method was combined with least-squares type stabilization.
There is a special group of methods based on Lagrangian–Eulerian conception of mesh

movement and on the fully coupled (‘integrated’) treatment for the system ‘�ow variables—
interface’. In these methods the system of �ow equations with free-surface boundary con-
ditions is discretized as a whole with respect to the �ow variables and to some func-
tional representation (parametrization) of the interface. The resulting system of the non-linear
algebraic equations is then solved using a Newton or quasi-Newton iterative procedure. Such
methods were proposed in References [21, 22] for steady free-surface �ows, and then extended
to unsteady �ows with free moving boundaries in References [23–25].
Eulerian methods are used in combination with either interface-tracking or interface-captur-

ing approach. The former approach can be further decomposed into surface-tracking and
volume-tracking. Surface tracking methods represent an interface as a series of interpolated
curves through a discrete set of points on the interface. At each time step, the information
about the location of the points and sequence in which they are connected is saved. The
points are then moved according to an interface evolution equation. For the overview of early
works on surface-tracking methods, the paper [26] may be consulted. The later works using
surface-tracking approach are due to Glimm’s group (see References [27, 28]) and Tryggva-
son’s group [29, 30]. Among the recent works on surface-tracking we could mention Shyy
et al. [4], Popinet and Zaleski [31] and Tornberg [32]. The modi�ed surface-tracking methods
not using a connectivity of the set of interface points have been proposed in Reference [33]
and in Reference [34]. The comparison of front-tracking with lattice-Boltzmann method has
been recently carried out in Reference [35]. In all these works, tracking of the interface was
computationally segregated from the calculation of �ow variables.
Volume-tracking Eulerian methods do not store a representation of the interface but re-

construct it whenever necessary. The reconstruction is done cell by cell and is based on the
presence of marker quantity within the cell. The marker particles are only used to show which
cells contain �uid and are moved with a �uid velocity in a purely Lagrangian manner. The
�rst Eulerian volume-tracking algorithm for free-surface �ows seems to be the marker-and-
cell (MAC) method of Harlow and Welch [36] that used �xed uniform mesh and the �nite-
di�erence approximation. The approach was extended and strenghtened by many researchers;
we would mention here the papers [37, 38]. For more recent algorithms using marker par-
ticles idea the works [39, 40] may be consulted, in which the �nite element method was
employed for the spatial discretization. It is worth noting that, like in other methods using
purely Eulerian way of �ow modelling, the treatment of �ow–interface coupling is performed
in a segregated manner within the volume-tracking framework.
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In the interface-capturing Eulerian methods the interface is reconstructed from the properties
of suitable �eld variables, such as �uid fractions. Namely, the interface is represented as either
a discontinuity line of some characteristic function (‘discontinuous interface-capturing’) or a
zero-level set of some implicit function (‘continuous interface-capturing’). That function obeys
pure transport equation, which states that the interface is a material line propagating with the
�uid.
The �rst algorithm of the discontinuous interface-capturing type was suggested in Reference

[41] and is called volume-of-�uid (VOF) method. The VOF-type algorithms typically employ
a segregated treatment for the system ‘�ow variables—interface’ and �nite di�erence or �nite
volume approximations on �xed grids. For the review on state-of-the-art VOF-like methods
one may be pointed to the papers [3, 42] (see also Reference [43]). Some further references
include the work Brackbill et al. [44] remarkable by its ‘continuum surface force’ (CSF)
approach proposed to include the surface tension into the right-hand side of momentum equa-
tion (see also Reference [45]) and the paper [46] where the alternative ‘continuum surface
stress’ method was proposed within the �nite volume framework (see also Reference [47] for
the implementation of the latter method in the combination with �nite elements). The VOF
interface-capturing method has been exploited in the absence of surface tension e�ect also in
References [48–51].
In contrast to the representation of the interface as a discontinuity line within discontinuous

interface-capturing framework, in the continuous approach the interface is de�ned as a zero
level set of some continuous function. This gives rise to the notion of ‘level-set approach’
that started from the work [52] and has been further developed in References [32, 53–57] see
also the books [58, 59]. A very similar ‘pseudo-concentration’ technique was developed in a
parallel manner, see References [60–63].
The detailed comparison of diverse numerical methods for interfacial �ows led us to some

speci�c choice of basic components of the numerical modelling strategy. First, we choose
purely Eulerian approach, since it enables us to use a �xed structured grid on a �xed compu-
tational domain. Second, we rely on the interface-capturing in order to be able to deal with
complex interfacial motions including interface merger, folding and break-up. In particular,
the level-set approach is taken in the present work. Next, we employ the operator-splitting ap-
proach that immediately yields a segregated treatment of not only the �ow–interface coupling
but also of di�erent parts of the problem, which correspond to di�erent physical processes.
This is computationally very advantageous, as the specialized numerical scheme can be used
for each part of the problem’s operator, and, instead of one very large problem, we have to
resolve a sequence of smaller subproblems.
The rest of the paper is organized as follows. In Section 2 the mathematical model is set

out, Section 3 is devoted to the description of the computational method and the discussion of
corresponding stability issues, Section 4 presents diverse numerical experiments, and, �nally,
the conclusions are drawn in Section 5.

2. SETTING OF THE PROBLEM

We start with the speci�cation of the physical assumptions used to derive a suitable math-
ematical model for our problem. We consider an unsteady laminar �ow of two immiscible
�uids. Both �uids are assumed to be viscous and Newtonian. Moreover, we suppose that
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Figure 1. Sketch of a two-�uid �ow con�guration.

the �ow is isothermal, thus neglecting the viscosity and density variations due to changes
of a temperature �eld. We assume also that the �uids are incompressible. The validity of
this assumption is a�ected by several factors, the most important of which is the con-
dition for Mach number to be smaller than, approximately, 1

3 (see Reference [64, Chap-
ter 3.6], for a thorough discussion on the incompressibility assumption). That condition is
satis�ed in our case, since we deal with essentially subsonic �ows. Presuming, in addi-
tion, the �uids to be homogeneous, we may infer that the densities and viscosities are
constant within each �uid. We utilize the sharp-interface (zero interfacial thickness) ap-
proach; the density and viscosity have, therefore, a jump discontinuity at the interface (see
e.g. Reference [64]). We assume that the interface has a surface tension. We also sup-
pose that there is no mass transfer through the interface (i.e. the interface is impermeable),
and there are no surfactants present in the �uids (hence, there is no species transport along
the interface). Under such conditions we do not have to consider the variations of surface
tension coe�cient in tangential to the interface direction, i.e. the solutocapillary Marangoni
e�ect (the thermocapillary Marangoni e�ect has been excluded by the assumption on isother-
mal character of the �ow). Therefore, the surface tension coe�cient may be assumed
constant.
Suppose that the motion of two viscous immiscible �uids under our investigation is con�ned

to some box (a parallelepiped in 3D, a rectangle in 2D). For the sake of simplicity we consider
only 2D case, but the proposed approach is easily extendible to 3D situation. The boundary
of the box can be physical (e.g. the walls of a container), arti�cial (if we consider a �ow
in unbounded domain) or partly arti�cial. In fact, we can always restrict ourselves to some
bounded region of interest and consider, then, the �ow in that region only. On the other
hand, this enables us to avoid dealing with asymptotics at in�nity and to make the problem
more tractable from computational viewpoint. We denote the boundary of the box by �, the
domains occupied with the �uids by �1 and �2 and the interface between the �uids by �
(�= @�1 ∩ @�2, where @�i is the boundary of �i ; i=1; 2), see Figure 1. Let also � be
the entire region occupied with the �uids, i.e. the interior of the box (�=�1 ∪�2 ∪�). The
domains �1 and �2 may be multiply connected, and the interface � may intersect the box
boundary �.
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Taking into account the physical assumptions considered above, we may assert that the
�ow of both �uids is governed by the incompressible Navier–Stokes equations

�(x)
(
@v
@t
+ v · ∇v

)
− ∇ · (2�(x)S) +∇p=�(x)g (1)

∇ · v=0 in �; t¿0 (2)

supplemented with the interfacial conditions

[v]|� =0; [−pI+ 2�S]|� · n=��n (3)

Here the density �(x)=�1 in �1 and �2 in �2, the viscosity �(x)=�1 in �1 and �2 in �2,
g is the acceleration of gravitational �eld, S= 1

2(∇v+ (∇v)T) is the deformation rate tensor,
I is the identity tensor, � is the coe�cient of surface tension, � is twice the mean curvature
of the interface, n is the unit normal to the interface, and [:::]|� denotes a jump across the
interface �.
Equations (1) and (2) and interfacial conditions (3) should be complemented with some

boundary condition on � for velocity, for example,

v=0 on � (4)

and with the initial conditions

�|t=0 = �(0) (5)

v|t=0 = v(0) in �(0) (6)

where �(0) is the initial position of the interface determining initial shapes of the domains
�(0)1 and �(0)2 .
Obviously, we have three unknowns here: the velocity of �uid v(x; t), the pressure p(x; t)

and the interface �(x; t). The position of the interface at any moment of time can be de-
termined using the fact that, in the absence of mass transfer through the interface (see the
�rst of the interfacial conditions (3)), the interface is convected by the �uid, i.e. the interface
normal velocity is equal to the normal component of �uid velocity (the latter is continuous
across the interface, see (3)).
The problem at hand contains three key ingredients: (i) �ow equations (i.e. the Navier–

Stokes equations with discontinuous coe�cients and singular capillary force), (ii) moving
interface and (iii) coupling between velocity–pressure �elds and the interface (through the
coe�cients, capillary force and interfacial advective velocity). To attack the problem numeri-
cally we advocate the operator-splitting approach; namely, at each time step, we �rst resolve
the Navier–Stokes system with �xed known interface, then, using computed velocity �eld,
we �nd the new approximation of the interface. Having found the new interface position we
can calculate its normal and curvature, and, thus, evaluate the surface tension force and the
density=viscosity coe�cients to be used on the next time step in the Navier–Stokes equations.
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3. NUMERICAL METHOD

3.1. Discretization of the Navier–Stokes equations

Using the Marchuk–Yanenko fractional-step scheme (see e.g. Reference [65]) we may separate
the convective non-linearity, viscous di�usion and incompressibility from one another and treat
each of them with corresponding numerical technique. Thus, on each time interval [tn; tn+1]
the Navier–Stokes (NS) system (1)–(3) is approximated by a sequence of three subproblems:

1: NS-convection step :

@v
@t
+ v · ∇v=0 in �× (tn; tn+1) (7)

v|t=tn = vn

=⇒ v∗

2: Viscous step :

�(x)
@v
@t

− ∇ · (2�(x)S)=�(x)g in �× (tn; tn+1) (8)

[v]|� =0 ; [2�S]|� · n=��n on �

v|t=tn = v∗

=⇒ v∗∗

3: Projection step :

@v
@t
+

1
�(x)

∇p=0 (9)

∇ · v=0 in �× (tn; tn+1)

[v]|� · n=0; [p]|� =0 on �

v|t=tn = v∗∗

=⇒ vn+1; pn+1

Here vn(x) and pn(x) are the approximations to v(x; tn) and to p(x; tn), n=0; 1; : : : ; respec-
tively, and v0 ≡ v(0). Each of three subproblems must be complemented by suitable boundary
conditions which will be discussed below. The general strategy consists in resolving the steps
successively; moreover, each step can be treated with its own time discretization scheme em-
ploying a speci�c (variable) time-step size dictated by stability and=or accuracy reasons. Thus,
the given global time step �t= tn+1 − tn may be subdivided into smaller time steps within
each of the subproblems.
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The fractional-step scheme is formally 1st-order accurate but known to be very robust (see
e.g. Reference [66]). A rather similar operator-splitting approach was proposed in References
[67, 68] (characteristic-based split (CBS) method) and proved to be very e�cient for simula-
tion of transient �uid �ows.
The operator-splitting implies a decomposition of the interfacial conditions. The splitting

of the interfacial stress jump condition indicates that the surface tension balances the jump
of viscous stress only (subproblem 2), while the pressure is simply continuous across the
interface (subproblem 3). Such approximation of the interfacial condition seems to be in
contradiction with the fact that the pressure does have a jump discontinuity at the interface,
which can be clearly seen from the famous Laplace–Young equation, if the viscosity is very
small. However, we will demonstrate in numerical tests that the chosen scheme is capable of
capturing the pressure interfacial discontinuity with a good accuracy; thus, there is no need
to enforce the discontinuity explicitly. It is worth noting that such kind of splitting of the
interfacial stress condition is common for operator-splitting (projection) methods applied to
the Navier–Stokes equations with interfaces (see e.g. Reference [53] for the �nite-di�erence
or Reference [31] for the �nite-volume implementation).
All the subproblems (7)–(9) are discretized in space by the �nite element method using a

single uniform triangulation for both velocity and pressure. It is worth to emphasize that the
grid is kept �xed throughout the whole process of computation, independently of the interface
location. If we denote the triangulation by Th, where h is the mesh size (i.e. the maximal
diameter of the triangles), the approximation space for the pressure can be de�ned as

Qh= {ph ∈C0(�)|ph|T ∈P1 ∀T ∈Th} (10)

where P1 is the space of polynomials in two variables of degree less than or equal to 1. The
discrete velocity belongs to the following space:

Vh= {vh ∈C0(�)| vh|T ∈P∗ ×P∗ ∀T ∈Th} (11)

where P∗ is de�ned as (a) P∗ ≡P1 or (b) P∗ ≡Pb1. Here Pb1 =P1
⊕
span{�1�2�3} (�i; i=

1; 2; 3, are the area (barycentric) co-ordinates on the triangle T ). In the case (a) we deal with
the P1=P1 �nite element for the velocity and pressure, and in the case (b) with the so-called
‘mini’ �nite element (see e.g. Reference [69]). It is worth noting that the ‘mini’ element
satis�es the LBB (inf–sup) condition, while the equal-order (P1=P1) approximation does not.
However, in combination with the operator-splitting (8)–(9) (which is, in fact, a continuous
version of the well-known Chorin projection scheme), the P1=P1 approximation is stable, if
the time step �t¿Ch2 (C is a constant), see e.g. Reference [70]. This fact enables us to
use the most economical but su�ciently accurate P1=P1 approximation for the velocity and
pressure.
Now we address brie�y the solution of the subproblems (7)–(9). The Navier–Stokes con-

vection step is the �rst-order non-linear hyperbolic problem, and, thus, the boundary conditions
consist of prescribing the �uid velocity only on the in�ow part of the boundary � (i.e. where
the �uid velocity is directed inward the domain �). Then the problem is solved with the
explicit Taylor–Galerkin scheme TTG-4A of Quartapelle and Selmin [71].
The viscous step requires the boundary conditions to be as for the complete problem, i.e.

(4). The use of the �nite element method for spatial discretization of the viscous step is
very essential, since in the weak (variational) formulation, on which the method relies, the
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interfacial stress jump condition becomes a natural condition. Thus, after multiplying (8)
with weighting function w and integrating in � by parts, the surface tension force becomes
automatically incorporated into the variational formulation:

∫
�
�(x)

@v
@t

· w dx +
∫
�
2�(x)S · ·∇wT dx

=
∫
�
�(x)g · w dx +

∫
�
��n · w d� (12)

The method does not require to approximate a delta-function as it is usually done for ac-
counting of singular capillary force (see e.g. References [29, 44, 53]) and, hence, precludes
the interface smearing. As we are about to see, the interface � can be easily localized ow-
ing to the �nite element discretization; thus, a sharp interface can be maintained, and the
capillary force can be computed by the direct integration over �. Another advantage of the
considered approach consists in alleviating the singularity connected with the di�erentiation
of discontinuous viscosity coe�cient; in fact, this problem is completely eliminated with the
formulation (12).
After an implicit temporal discretization of (12) with the backward Euler or the Crank–

Nicolson scheme (the term ‘implicit’ is used for the velocity �eld only, while the interface
� and, consequently, the density and viscosity coe�cients are treated explicitly), we obtain
a linear algebraic system having symmetric and positive-de�nite matrix; the system could be
successfully solved, for instance, by incomplete Cholesky preconditioned conjugate gradient
method.
The projection step de�nes an inviscid �ow problem, thus, the boundary conditions consist

in prescribing the boundary values only for the normal component of �uid velocity on �.
After implicit time-discretization with the time step �t the problem can be recast in the
form of a Poisson-type equation for the pressure endowed with the homogeneous Neumann
boundary condition

−∇ ·
(

1
�(x)

∇pn+1
)
=− 1

�t
∇ · v∗∗ in � (13)

n · ∇pn+1|� = 0 (14)

where v∗∗ is the intermediate velocity obtained on the viscous step. The �nal divergence-free
velocity vn+1 is then derived as

vn+1 = v∗∗ −�t 1
�(x)

∇pn+1 (15)

3.2. Approximation of the interface

We use the level-set approach (see References [52, 58]) for capturing the interface �. The ap-
proach consists in specifying a continuous ‘level-set function’ 	 such that 	 is the signed dis-
tance to the interface �, 	¿0 in �2 and 	¡0 in �1. Obviously, we have �= {x|	(x; t)=0
∀t¿0} and |∇	|=1 in �.
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Since the interface is convected with the �uid velocity, the following evolution equation
for 	(x; t) can be easily derived (see e.g. Reference [54]):

@	
@t
+ v · ∇	=0 in �; t¿0 (16)

We solve this pure advection equation with the �uid velocity v found as the solution of
the Navier–Stokes system and with the same explicit Taylor–Galerkin scheme TTG-4A of
Quartapelle and Selmin [71] as on the Navier–Stokes convection step. An explicit scheme
with the CFL stability condition Co61 (Co= |v|�t=h is the Courant number), particularly the
scheme TTG-4A, is well suited for solving the level-set convection problem, as this condition
means that during one time step the interface does not move farther than to the distance h
from its previous position. Thus, the interface does not skip any domain element, which is
proved to be a reliable guide in selecting the time step for interface propagation (see e.g.
Reference [63]).
The continuous piecewise-linear approximation is utilized for 	 on the same uniform grid

that is used for velocity–pressure approximation. Such approximation allows us to easily
localize the interface at any moment of time: indeed, the intersection of the approximate
level-set function with each triangle of the grid is just a line segment possibly degenerated to
a point (a vertex of the triangle); moreover, to �nd this line segment one has to determine
only the intersection points of the approximate, linear level-set function with triangle’s edges.
Thus, using piecewise linear continuous approximation for the level-set function on simplicial
mesh, we obtain unique piecewise linear representation for the interface �.

3.2.1. Level-set reinitialization. At the beginning of computational process the level-set func-
tion 	 is initialized as the signed distance to the interface �(0). But, as time goes, the level-set
function may become very steep or �at in some regions, particularly in the vicinity of the
interface, thus losing the nice property |∇	|=1. This deterioration of the level-set function is
a natural consequence of the convection process, but it makes di�cult an accurate determina-
tion of the interface. In order to cure the situation, the level-set function must be reinitialized,
i.e. made again the signed distance function. It is worthwhile to note that this ‘redistancing’
should be done only in some vicinity of the interface, since the values of the level-set func-
tion far from � have no in�uence on the interface dynamics. Using the interface localization
discussed above, the redistancing can be done by straightforward computation of the normal
distance to the interface at each grid point located within the mh-band around the interface
(integer m ranges typically between 5 and 10). The algorithm has a complexity O(N 2), where
N is the number of grid nodes along one co-ordinate direction, i.e. depends linearly on the
total number of grid points (see Reference [72]).

3.2.2. Level-set correction. The reinitialization of the level-set function is very important for
accurate determination of the interface, but it cannot guarantee the mass conservation. In fact,
due to the incompressibility assumption the area (volume in 3D) of the region occupied by
each of the two �uids must be conserved during the whole computational process. However,
this is not the case because of di�erent numerical errors, and after many time-steps or any
change of the interface topology the relative decrease=increase of the area of one of the
�uids may be about several percents (see e.g. Reference [53]). We propose a very simple
and e�cient approach that uses an additional, level-set correction step to explicitly enforce
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Figure 2. Level-set correction (solid lines are the old and the new zero-level sets).

the mass conservation. Suppose that we have performed the reinitialization of the level-set
function 	, thus, in some neighbourhood of the interface, 	 is the signed distance function
and its level sets (isolines) are equidistant. Then we may easily correct the area of the
domain �2 = {x∈� :	¿0}, still retaining the shape of the interface, by considering as a
new zero-level set some isoline of 	 that lies in the vicinity of the current interface curve
(see Figure 2). This operation can be accomplished simply by moving the level-set function
upward or downward, i.e. by adding to 	 some signed constant C	, where |C	| is the distance
between old and new zero-level sets (the fact, that 	 is a distance function, plays the important
role here).
To �nd the expression for C	, we denote by 	new the new level-set function, �new2 = {x∈� :

	new¿0}, and utilize the well-known formula for the �rst variation of a volume integral (see
e.g. Reference [73] or Reference [74]):

Sexact − S(�2) =
∫
�new2

dx −
∫
�2
dx=

∫
�
(C	n) · n d� + O(C2	)

=C	
∫
�
d� + O(C2	) (17)

where Sexact is the exact area of the region occupied with the second �uid (Sexact is always
known to us), S(�2) is the area of �2. It immediately follows that

C	 =
Sexact − S(�2)

L(�)
(18)

where L(�) is the length of the interface �. The formula (18) is accurate up to O(C2	) (we
assume that 0¡l16L(�)6l2¡+∞, l1 and l2 are independent of any physical and numerical
parameters of the problem).
First, it is noteworthy that if S(�2)¿Sexact we obtain from (18) C	¡0, and the level-set

function 	 is to be lowered, which automatically implies a shrinkage of the domain �2; if
S(�2)¡Sexact then C	¿0, and �2 automatically expands. Next, we may note that the level-set
correction procedure makes sense also in the case of multiply connected domain �2 and in
the case when � is only a part of the boundary of �2.
The justi�cation of the level-set correction is essentially based on two facts: 	 being a

distance function in some vicinity of the interface and smallness of |C	|. The former fact
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means that the level-set correction should follow the reinitialization on every time-step. The
smallness of modulus of the correction constant is the crucial point in justifying the method;
indeed, arti�cial moving of the interface is not allowed, except as the movement magnitude
is not greater than the interface interpolation error. If we assume that �∈C2, the piecewise
linear interfacial interpolation gives us the error O(h2) in L∞-norm. Hence, |C	| should not
be greater than O(h2); below we will show that it can be expected. It is worth noting that
the e�ect of the level-set correction is usually almost negligible within one time-step, but the
correction’s main purpose is to prevent an accumulation of numerical errors in a long run.
The major sources of the error in the interface location are the discretization error of

the convection scheme and the discretization error of the advective velocity. The Taylor–
Galerkin scheme TTG-4A employed for the level-set convection is 4th-order accurate in time
and has the 4th-order spatial accuracy at grid nodes (see References [75, 76]). Since we
use P1-elements for the level-set function 	h, which immediately yields a piecewise linear
representation for �h, the L∞-norm of the error in the interface convection should not be
greater than O(h2), if the exact interface � is smooth enough (the temporal error does not
pollute the spatial accuracy, since �t=O(h) due to accuracy and stability reasons). The error
coming from the discrete advective velocity is also not greater than O(h2): in fact, the interface
propagates with the �uid velocity whose discretization error is about O(h) in L∞-norm (as will
be shown in the static bubble test, see also Reference [72]), thus, during one time-step of size
�t=O(h) the error in the interface location cannot become greater than O(h) · O(h)=O(h2).
Hence, we can expect the magnitude of zero-level set movement during each mass-correction
to be not greater than O(h2).

Remark 3.1

(a) The level-set correction is intended to enforce the global mass conservation for each
of the two �uids; it does not, however, guarantee the local conservation of mass. For
example, if the domain �2 consists of two parts, the missing area will be distributed
between the parts proportionally to their interface-lengths. A similar problem with the
local mass conservation has been reported in the level contour reconstruction method of
Shin and Juric [34]. However, in contrast to the example of Figure 14(a) in Reference
[34], our approach cannot result in a growth of one part of �2 at the expense of a
shrinkage of the other part; the level-set correction yields either an expansion or a
shrinkage of all parts of �2 simultaneously.

(b) Since the error of formula (18) is O(C2	) and |C	| is O(h2), the level-set correction
method should imply the mass conservation up to O(h4). However, in reality we deal
with the function 	h, which is not an exact distance function but only its piecewise
linear approximation; thus, moving 	h upward or downward in accordance with C	
we obtain a new zero-level set that may di�er by O(h2) from the desired one. This
implies the mass conservation error O(h2) which is consistent with the spatial accuracy
of the interface approximation.

3.3. Approximation of interface normal and curvature

Having computed the piecewise-linear approximation 	h of the level-set function, we can �nd
the interface normal by virtue of the formula nh=∇	h=|∇	h|. This results in a piecewise-
constant approximation of the normal; if we assume that the interface � (hence, the function
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	 in some neighbourhood of the interface) belongs to C3, a standard gradient averaging
procedure applied to nh will lead to the piecewise-linear continuous approximation ñh having
O(h2) accuracy (see References [77–79]). It is important that, since 	h is de�ned over the
entire domain �, ñh(x) is also formally de�ned for almost every x∈�. Using this fact, we
may compute the curvature by two methods: either directly as

�h=−∇ · ñh (19)

or by using the variational formulation for the curvature equation∫
�
�̃hqh dx=

∫
�
ñh · ∇qh dx −

∫
�
(ñh · n�)qh d�; �̃h ∈Qh; ∀qh ∈Qh (20)

where n� is the outward unit normal to the boundary � and Qh is the �nite-dimensional space
of continuous piecewise-linear functions de�ned on the considered uniform triangulation (see
(10)). Solution of (20) simply amounts to resolving the system with the consistent mass
matrix. It is demonstrated in Reference [72] that the piecewise-constant approximation �h has
O(h) accuracy, while the piecewise-linear �̃h attains the accuracy O(h2). The latter fact is
quite remarkable, since we use only linear interface approximation, and allows us to evaluate
accurately the surface tension force.

3.4. Evaluating the interfacial force and density=viscosity �elds

After the approximations for the interface normal and curvature have been constructed, the
discrete interfacial force term ∫

�h


�h�ñh · wh d�h (21)

can be easily computed ( 
�h stands here for either �h or �̃h). Since �h is the union of closed
interfacial line segments {�hi}, the integral (21) can be represented as a sum of the integrals
over �hi and, thus, computed elementwise. The integral over each interfacial line segment is
evaluated with the help of the standard 2-point Gaussian quadrature that is exact for polyno-
mials of the 3rd degree. This choice of the quadrature formula is justi�ed if the weighting
function wh for the viscous momentum equation is piecewise linear (P1-elements for velocity).
Numerical experiments show that the same quadrature rule can be utilized when Pb1-elements
are used for velocity, although the integration will not be exact.
The localization of the interface enables us to compute accurately the integrals containing

discontinuous density or viscosity coe�cients; this is especially important for preserving a
discrete momentum balance in the vicinity of the interface. De�ne the characteristic function

I(x)=

{
1 for x∈�1
0 for x∈�2

and the discontinuous density and viscosity �elds

�(x)=�2 + I(x)(�1 − �2)

�(x)=�2 + I(x)(�1 − �2)
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It is evident that on the elements not crossed by the interface, the density and viscosity
coe�cients are simply constant, and evaluation of the corresponding integrals can be done in
a standard way. Thus, the problem is to compute the integrals of the form∫

Ti
�(x)A(x) dx (22)

over each triangle Ti intersected by the interface �h (A is a continuous within Ti function).
First, we may note that taking �(x) constant in Ti (equal, e.g. to the average (�1 + �2)=2)
implies the error O(h2) of computing the integral over Ti, and, since the number of such
triangles crossed by �h is proportional to 1=h, the error in computing the global integral∫
� �(x)A(x) dx is O(h) for a general function A. This is insu�cient accuracy, and numerical
experiments indicate that this method is approximately equivalent to the smoothing out the
density=viscosity coe�cients over a few grid cells in the �nite di�erence framework (see the
discussion in Reference [32]). On the other hand, a straightforward use of standard numerical
quadratures for a discontinuous integrand is strictly prohibited, as the quadratures are not
convergent in such a case.
To overcome the di�culty of integrating a discontinuous function, we advocate the so-

called ‘discontinuous integration’ approach that is proved to be useful in two-phase problems
(see e.g. Reference [80] and references herein, [32]). The approach essentially uses the fact
that the discrete interface �h is just a line segment within each interfacial element Ti. Indeed,
the triangle Ti becomes cut in two parts, a triangle T ∗

i and a quadrilateral. If we denote by
I∗ and I∗∗ the values of the characteristic function I(x) in those parts of Ti, the integral (22)
can be calculated as follows:

∫
Ti
�(x)A(x) dx= (�2 + I∗(�1 − �2))

∫
T∗
i

A(x) dx

+(�2 + I∗∗(�1 − �2))
∫
Ti\T∗

i

A(x) dx

= (I∗ − I∗∗)(�1 − �2)
∫
T∗
i

A(x) dx

+(�2 + I∗∗(�1 − �2))
∫
Ti
A(x) dx

This expression can be readily computed, since I =1 where the level-set function 	¡0 and
I =0 where 	¿0 (we set 	 positive in �2 and negative in �1), and both integrals are over
triangles; no subdivision of the quadrilateral Ti\T ∗

i into triangles is required, which makes
the algorithm simpler (this is especially true for its 3D counterpart). On the discrete level the
integrals over Ti and T ∗

i may be computed exactly, assuring a good evaluation of the discrete
balance equations near the interface.
The error of the discontinuous integration method comes from the interface approximation

by a straight line, which yields O(h3) error of the integration over a single triangle Ti (with
an error constant depending on A(x)). The number of the triangles intersected by the interface
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is proportional to 1=h, thus the error in computing the global integral
∫
� �(x)A(x) dx is O(h

2)
for a general function A.

Remark 3.2
It is shown in Reference [81] that numerical smoothing (smearing) of the physical parameters
like density and viscosity across the interface may lead to signi�cant errors in the balance
equations. The presented combination of the �nite element method and the level-set approach
allows to avoid any numerical smearing of material coe�cients or surface tension force at
the interface.

3.5. Summary of the algorithm

Our computational approach for numerical modelling of interfacial �ows can be summarized
as follows:
Step 0: Initialization of the level-set function and velocity.
For each nth time-step, n=1; 2; : : ::

1. Computing of interface normal, curvature and density=viscosity �elds.
2. Navier–Stokes convection step.
3. Viscous di�usion step.
4. Projection step.
5. Level-set convection step.
6. Reinitialization step.
7. Level-set correction step.

Steps 1–7 are performed successively, and each of steps 2–5 may use its own local time-
increment size. On each step the last computed velocity is exploited; the viscous di�usion and
projection steps use the interface position found on the previous global time-step. It is also
noteworthy that steps 5–7 of the nth time-step can be computed in a fully parallel manner
with the step 2 of the next, (n+1)st time-step. The whole algorithm is very �exible; it allows,
for instance, to compute unsteady interfacial Stokes �ow just by omitting the Navier–Stokes
convection step.

3.6. Stability issues and time scales

Each interfacial �ow problem is characterized by some set of non-dimensional parameters
(criteria) as well as by some speci�c time scale. That time scale is extremely important,
as it re�ects the dynamics of the considered physical process; it also serves as a guideline
for selecting a time-step size in numerical simulations. Although the physical time scale is
always dependent on the problem at hand, there are some common scales connected with
typical physical phenomena like gravity, surface tension, viscosity.
Let L be the length scale of the considered problem. The gravity phenomenon is well

represented by the dimensionless Froude number Fr=U (g)=
√
gL, where g is the magnitude

of the gravitational acceleration and U (g) is the characteristic scale of velocity. If we denote
by �t(g)phys the typical time scale of a gravity-driven physical process, then U

(g) =L=�t(g)phys.
A characteristic time-scale should be such that all physical e�ects forming corresponding
non-dimensional criterion counterbalance each other; thus, from Fr=L=�t(g)phys

√
gL≈ 1 we can
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deduce

�t(g)phys ≈
√
L
g

The surface tension phenomenon in viscous �ow is characterized by the capillary number
Ca=�U (ca)=�, where � is the dynamic viscosity, � is the coe�cient of surface tension and
U (ca) is the velocity scale. If �t(ca)phys is the typical time scale of a capillarity-driven physical

process, then U (ca) =L=�t(ca)phys, and from Ca=�L=�t(ca)phys�≈ 1 we obtain

�t(ca)phys ≈
�L
�

Finally, the viscosity is known to give a ‘viscous time-scale’ through the non-dimensional
Reynolds number Re=�L2=��t(v)phys, if L=�t

(v)
phys is considered as the velocity scale. Requiring

Re≈ 1 we immediately obtain

�t(v)phys ≈
�L2

�

To capture the dynamics of the modelled physical process, the numerical method should
use a time-step not exceeding the time-scales of all involved physical phenomena. However,
besides physical restrictions on the time-step size, there are some constraints originated from
the numerical approximation. In our computational method, an example of such stability-
restriction is the CFL condition appearing on the Navier–Stokes convection and on the level-
set convection steps due to explicit time-discretization. The projection step does not su�er
from any upper bound for the time increment, having only the inverse stability-constraint
(lower bound) for the time-step size if the equal-order interpolation is used for velocity and
pressure (this constraint is excluded by using an LBB-stable approximation). The viscous
di�usion step possesses two stability constraints due to explicit treatment of the gravity and
surface tension forces. Those constraints can be easily derived by the following empirical
analysis (see Reference [82]):

the stability restriction due to gravity can be represented in a form of CFL-type condition
vg�t

(g)
num=h61, where the corresponding gravity-induced velocity vg = g�t

(g)
num; then, we

obtain the maximal allowed time-step size as

�t(g)num =

√
h
g

the stability restriction due to capillarity can be represented in a form of CFL-type
condition vca�t

(ca)
num=h61, where the corresponding capillarity-induced velocity vca can be

calculated using the capillarity-induced acceleration �h��h=� (�h is the discrete delta-
function included since the capillary force appears only on the interface); it is easy to
see that �h=1=h at the interface, and the maximal possible curvature resolved on the
grid with size h is �h=1=h; thus, we obtain vca =�=h2��t

(ca)
num, and �nally

�t(ca)num =
√
�
�
h3=2

The latter condition was derived also in Reference [44].
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If an implicit time-discretization for the viscosity term is used, there are no other stability
restrictions except those indicated above. Thus, the �nal stability-constraint for the viscous
di�usion step is

�tv6min{�t(ca)phys ; �t
(v)
phys ; �t

(g)
num ; �t

(ca)
num}

since �t(g)phys is always greater than �t
(g)
num.

Remark 3.3
It is interesting to note that �t(g)num and �t

(ca)
num observed in numerical experiments are almost

two times larger than their theoretical predictions, which can be explained by the stabilizing
in�uence of the level-set correction procedure (see Section 3.2).

4. NUMERICAL RESULTS

4.1. The static bubble test

In order to verify our numerical approach, we start with the simple test considered by Lafaurie
et al. [46] (see also Reference [31]): a circular bubble in static equilibrium. In this problem,
the net surface force should be zero, since at each point on the bubble surface the tension
force is counteracted by an equal and opposite force at a diametrically opposed point. The
correct solution is a zero velocity �eld and a pressure �eld that rises from a constant value
of pout outside the bubble to a value of pin =pout + �=R inside the bubble, according to the
Laplace–Young law (R is the bubble radius).
Assume that the computational domain is the square (0; 1)× (0; 1); the bubble has the centre

(0:5; 0:5) and the radius R=0:25. We set the viscosity � and density � equal to 1 everywhere
in the domain and impose the no-slip condition on the domain boundary; the pressure is �xed
by setting it zero at one of the domain corners (hence, pout = 0 in our computations). The
gravity is neglected; the surface tension coe�cient � will be varied, thus yielding di�erent
values of the Laplace number La=(2R)��=�2. The computations are performed until the non-
dimensional time 
t= t=�t(ca)phys = 250, where the physical (capillary) time scale �t

(ca)
phys = (2R)�=�.

As a result of numerical simulations one can observe spurious velocity currents of amplitude
U near the bubble interface. In the work of Lafaurie et al. [46] it was conjectured that the
amplitude of the spurious currents must be proportional to �=�, which is equivalent to having
an approximately constant value of the capillary number Ca=U�=�.
The conjecture on constancy of the capillary number is clearly con�rmed in our compu-

tations, see Table I illustrating the constant character of Ca over a broad range of Laplace
numbers.

Table I. Constancy of the capillary number Ca with respect to the Laplace
number La (mesh size h= 1

40 , P1 elements for velocity).

La 5:0 5:0× 101 5:0× 102 5:0× 103 5:0× 104

Ca 9:1× 10−3 9:0× 10−3 8:8× 10−3 9:1× 10−3 9:4× 10−3

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:231–269



248 A. SMOLIANSKI

Table II. The error and the order of convergence (p) in the
l∞ norm for the non-dimensional velocity vh�=�: comparing

the two types of velocity elements.

P1 Pb1

h= 1
20 1:4× 10−2 1:5× 10−2

h= 1
40 9:1× 10−3 9:2× 10−3

h= 1
80 5:0× 10−3 4:2× 10−3

p≈ 0:8 0:9

Table III. The error and the order of convergence (p) in the discrete
L1 norm for the non-dimensional velocity vh�=�: comparing the two

types of velocity elements.

P1 Pb1

h= 1
20 6:9× 10−4 8:6× 10−4

h= 1
40 1:8× 10−4 2:3× 10−4

h= 1
80 4:7× 10−5 5:9× 10−5

p≈ 1:9 1:9

Table II shows the convergence of the non-dimensional velocity in the l∞ norm, i.e. the
decrease rate for the non-dimensional amplitude U�=� of the spurious currents (the l∞ norm
is de�ned as the absolute maximum over the grid nodes). The experiments were performed
on three di�erent grids with h= 1

20 ;
1
40 ;

1
80 ; the Laplace number was �xed at 5:0× 103. Two

types of elements were tested for the velocity approximation: P1 and Pb1.
It is apparent that both P1 and Pb1 elements exhibit nearly the 1st-order convergence. The

velocity resulting from the splitting (8)–(9) behaves like the Green function of the viscous-
step problem (8) (the surface tension force acts as a Dirac delta-function related to the bubble
interface), and the insu�cient regularity of Green’s function prevents a faster convergence.
In Table III the convergence of the non-dimensional velocity in the discrete L1 (‘average’)

norm is shown (the discrete L1 norm is de�ned as ‖vh‖1 = 1=M
∑M

i=1 |vh(i)|, where {vh(i)},
i=1; M is the set of nodal values of the discrete velocity, and M =O(h−2) is the total number
of velocity nodes). Since all the errors are concentrated within an interface neighbourhood
covering O(1=h) nodes, the rate of convergence in the discrete L1 norm should be one order
higher than in the l∞ norm. This is con�rmed by the numerical results of Table III.
In Reference [46] the magnitude of the spurious velocity currents is reported to be of

the order of 10−2 �=�, independently of the grid resolution; the connected marker method of
Tryggvason et al. [30] yields the maximum velocity of the order of 10−4 �=� on the grid with
h= 1

25 and smaller levels of the velocity currents on �ner meshes (although, no convergence
rate is reported in Reference [30]). In this light, our approach lies somewhere between the
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Figure 3. Pressure �eld corresponding to three di�erent mesh sizes.

Table IV. The absolute and relative errors in the Laplace–Young law.

|pin − pout − �
R | |pin−pout− �

R |
(�=R) × 100% (%)

h= 1
20 2:0× 10−2 0.5

h= 1
40 2:0× 10−3 0.05

h= 1
80 6:0× 10−4 0.015

methods of Lafaurie et al. [46] and Tryggvason et al. [30] with respect to the accuracy of
the velocity computations in the static bubble test.
Figure 3 illustrates the pressure behaviour in dependence on the mesh size. The P1=P1

�nite element pair was used for the velocity–pressure approximation; the Pb1=P1 elements gave
qualitatively the same results. It is clear that, in spite of the continuous approximation for the
pressure, the pressure discontinuity at the interface is maintained well. We have to note that
the proposed operator-splitting algorithm is better suited for purely transient problems, while
the steady-state results may su�er from the splitting error (which is of order of �t=O(h),
see e.g. Reference [66]). The truly sharp discontinuity of the pressure will be observed below
(see Figure 11) in the numerical experiments with a rising bubble. The qualitatively good
agreement with the Laplace–Young law is supported by the quantitative results shown in
Table IV. The absolute and relative errors in the Laplace–Young law indicate very good
accuracy of the pressure inside of the bubble (pin) when the P1 elements are employed for
velocity approximation; the Pb1 velocity elements give nearly the same pressure accuracy.
To summarize the results of the presented test, we may say that the splitting of the interfacial

stress jump condition implies, as it could be expected, some error in the velocity gradient,
but the error is concentrated in a small neighbourhood of the interface. While the velocity
approaches zero like O(h) in the l∞ norm, the velocity gradient remains of order O(1) in this
norm to balance the surface tension force at the interface. In the L1 norm the convergence
becomes one order higher, which clearly indicates the local character of the spatial distribution
of the errors. The velocity interfacial perturbation resulting from the operator-splitting makes
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the pressure gradient at the interface negative in the radial direction (i.e. away from the
bubble’s centre); this, in combination with the zero velocity (and, thus, pressure gradient)
inside and outside of the bubble, gives rise to the correct pressure pro�le, see Figure 3. It is
worth noting that the absence of any oscillations near the pressure discontinuity line can be
attributed to the stabilizing character of the projection-step operator: the pressure is sought as
the solution of the Poisson equation that, in its turn, acts as a ‘natural’ di�usion operator at
the interface.

4.2. Rising bubble

The next test is the simulation of a single bubble, rising in an initially quiescent �uid due
to the e�ects of buoyancy. The problem is characterized by four dimensionless parameters,
which we choose to be the density ratio �1=�2, the viscosity ratio �1=�2, the Reynolds number
Re=(2R)3=2

√
g�1=�1 and the E�otv�os number Eo=4�1gR2=�. Here R is the initial radius of

the bubble, index ‘1’ corresponds to the �uid surrounding the bubble, index ‘2’ to the �uid
inside of the bubble. The Morton number M =Eo3=Re4 is often used instead of the Reynolds
number.
The computational domain is the rectangle (0; 1)× (0; 2); the bubble is initially circular,

with the centre (0:5; 0:5) and the radius R=0:25. The free-slip boundary condition is imposed
on the vertical walls, and the no-slip condition on the horizontal walls; the initial velocity is
zero everywhere in the domain.
Figures 4 and 5 show the evolution of the bubble shape and of the velocity �eld, corre-

sponding to the same density and viscosity ratios (�1=�2 = 103, �1=�2 = 102). The Reynolds

Figure 4. Evolution of rising bubble with large surface tension (�1=�2 = 103, �1=�2 = 102, Re=35,
Eo=25); triangulation is based on 40× 80 rectangular grid.
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Figure 5. Evolution of rising bubble with small surface tension (�1=�2 = 103, �1=�2 = 102, Re=35,
Eo=125); triangulation is based on 40× 80 rectangular grid.

number Re=35 in both cases, but the E�otv�os number equals 25 and 125, respectively. The
computations were performed on the triangulation based on 40× 80 rectangular grid, the time-
step size �t= h=2. The Crank–Nicolson time discretization was employed for viscous di�usion
term, and the P1 elements were used for the velocity.
It is clearly seen that when the surface tension coe�cient is rather large (Eo=25) the

bubble has an ellipsoidal shape, while smaller surface tension (Eo=125) results in a more
signi�cant deformation of the bubble. In the latter case the bubble has a shape of a ‘dim-
pled ellipsoidal-cap’. Although all experimental results are known for really 3D bubbles, a
qualitative comparison is possible. As a main reference the book by Clift et al. [83] may be
cited, where a general diagram of bubble shapes in dependence on the E�otv�os and Reynolds
numbers can be found (see Figure 6). The comparison enables us to conclude that our nu-
merical bubble shapes are in a good agreement with the experimental predictions. Our results
depicted in Figure 4 also compare well with the numerical results of Unverdi and Tryggvason
[29] (Figure 3 in Reference [29]), and the results of Figure 5 with the experimental results
of Bhaga and Weber [84] (Figure 3(e) in Reference [84]; see also the numerical results of
Chen et al. [85, Figures 15 and 19]).
The typical bubble shapes and the streamlines in the local reference frames of the bubbles

are shown in Figure 7. It is apparent that all basic bubble shape regimes are successfully re-
covered with the physical parameters lying exactly within the experimentally predicted ranges
(see Figure 6). It is interesting to notice that, while the secondary vortices develop inside of
the bubble in any case, the vortices in the bubble wake are pronounced only when the bub-
ble deformation is signi�cant, i.e. for high E�otv�os numbers (especially remarkable fact is the
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Figure 6. Shape regimes for bubbles and drops. Figure reproduced from [83] with
permission of the publisher Academic Press.

formation of the recirculating region behind the bubble in dimpled ellipsoidal cap and spheri-
cal cap regimes, see Figures 7(c) and (e)). The results agree very well with the computations
of Unverdi and Tryggvason [29] and with the experiments of Bhaga and Weber [84].
Figure 8 illustrates the case of the so-called ‘wobbling bubble’ regime. The wobbling

typically appears with su�ciently high Reynolds numbers when the E�otv�os number is, roughly,
in the range between 1 and 100 (see Figure 6). In this shape-regime, the bubble initially has
a nearly spherical cap shape; however, at later stage of the motion, a remarkable �attening
of the bubble top can be observed (see Figure 8). The bubble bottom undergoes permanent
deformations resulting from the unstable and unsymmetric evolution of the bubble wake. In
particular, the unsymmetric pairs of secondary vortices are clearly observed in the wake as
the consequence of asynchronous separation of the boundary layer from di�erent sides of the
bubble surface. This �ow pattern bears some resemblance to the von Karman vortex path
typically formed behind a rigid body in a highly convective �ow.
With higher E�otv�os numbers, one can observe even more pronounced wake instability

(see Figure 9). While the wobbling of the bubble bottom remains apparent, the �attening
of the bubble top is not seen, which makes the bubble shape resemble a spherical cap. The
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Figure 7. Di�erent computed shapes of bubbles: (a) spherical with Re=1, Eo=0:6;
(b) ellipsoidal with Re=20, Eo=1:2; (c) dimpled ellipsoidal cap with Re=35,
Eo=125; (d) skirted with Re=55, Eo=875; (e) spherical cap with Re=94,
Eo=115; and (f) wobbling with Re=1100, Eo=3:0; �1=�2 = 103; �1=�2 = 102.

remarkable bubble wake, known in the literature as helical vortex path, is in a good qualitative
agreement with experimental investigations of Tsuchiya and Fan [86].
The results of Figures 8 and 9 agree qualitatively well with the experimental observations

cited in Reference [83]; we are unaware of any other numerical simulations of a wobbling
bubble dynamics.
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Figure 8. The rise of a wobbling bubble (�1=�2 = 103, �1=�2 = 102, Re=1100, Eo=3); triangu-
lation is based on rectangular grid with h= 1

80 .

Remark 4.1
The extensive numerical experiments have been conducted in the work of Smolianski
et al. [87], where the computed terminal rise velocities as well as the positions of bub-
bles in dependence on time for diverse shape regimes have been shown to agree very well
with the available experimental data.

The next group of numerical experiments is devoted to the convergence study. We take
the dimensionless parameters as �1=�2 = 103, �1=�2 = 102, Re=35, Eo=125 and compare the
solutions corresponding to h= 1

20 ;
1
40 ;

1
80 at the time t=3:0 s. Figure 10 illustrates the shape

convergence, while Figure 11 shows the convergence of the pressure (the modi�ed pressure,
i.e. the pressure without its hydrostatic component, is depicted). We may conclude that with
the present method the qualitatively correct picture may be obtained even on very coarse
meshes with h≈ 1

20 . It is worth noting that the pressure discontinuity is captured very well;
this fact has been already emphasized in the preceding section.
The following set of numerical tests is related to the mass conservation issue. We take

again the physical parameters �1=�2 = 103, �1=�2 = 102, Re=35, Eo=125, the P1 elements
for velocity and the triangulation based on 20× 40 rectangular grid. At the time t=3:0 s we
compare the result obtained without reinitialization and level-set correction steps with the one
computed with reinitialization–correction procedure. Figure 12 shows the relative change of
bubble mass (i.e. of bubble area) as a function of time.
The necessity of the reinitialization–correction procedure is clearly con�rmed by Figure 12.

The maximal relative error in the bubble mass on the considered time interval [0; 3] is about
25% without reinitialization–correction and 0:8% with the reinitialization–correction procedure.
Figure 13 illustrates the grid convergence for the relative change of bubble mass when

the reinitialization and correction steps are performed. The maximal relative error in the
bubble mass on the time interval [0; 3] is about 3h2 for each of the three computations
corresponding to h= 1

20 ;
1
40 ;

1
80 . This con�rms the theoretically predicted O(h2)-accuracy of
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Figure 9. Helical vortex path behind the bubble (�1=�2 = 102, �1=�2 = 10, Re=900, Eo=20:2);
triangulation is based on rectangular grid with h= 1

80 .

mass conservation. The conservation of bubble mass is, indeed, very good: for h= 1
40 the

maximal relative error is about 0:2%, and for h= 1
80 it is ≈ 0:05%.

4.3. Breaking bubble

In this test we use the same initial and boundary conditions as in the preceding section; the
dimensionless parameters are �1=�2 = 103, �1=�2 = 102, Re=700, Eo=500. For such E�otv�os
number the bubble should become ‘skirted’ in accordance with the experimental predictions
(see Figure 6), which can be also seen in Figure 14. Later, the skirt breaks o� due to the
action of the vortices in the bubble wake, and the remaining part of the bubble rapidly
develops a spherical-cap shape. This is also in a full agreement with experimental obser-
vations (see Reference [88]), but, in reality, it happens at much smaller Reynolds numbers
(about 10÷ 100) than those used in our experiments. That is, probably, due to the essentially
three-dimensional behaviour of a real skirted bubble (see also Reference [89]). However, a
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Figure 10. Grid convergence test for the bubble shape (�1=�2 = 103, �1=�2 = 102,
Re=35, Eo=125); time t=3:0.

qualitative picture of bubble break-up seems to be captured well even with the presented 2D
computations.
Our results compare well with the 2D numerical results of Sussman et al. [53], who

employed the �nite-di�erence level-set method, and with the 2D numerical predictions of
Baker and Moore [90], who advocated the boundary integral method for an inviscid gas
bubble.
A typical time-dependence for the relative change of bubble mass is shown in Figure 15.

The �uctuation in about 5% appears precisely at the moment of the bubble break-up and
seems to be unavoidable, because of a limited grid-resolution inherent to any numerical ex-
periment. However, the method quickly recovers the bubble mass, and the relative error of
mass conservation becomes a small fraction of 1%.

4.4. Merger of two bubbles

Here we consider the rectangular domain (0; 1)× (0; 2) with two circular bubbles inside;
the centre of the �rst bubble is (0:5; 1:0) and its radius is equal to 0:25, the centre of the
second bubble is (0:5; 0:5) and the radius is 0:2. Thus, the bubbles have a common axis of
symmetry, and the initial distance between them equals 1

5 of the radius of the largest bubble.
We take zero velocity �eld at the initial moment and the same boundary conditions as in
the preceding sections. The dynamics of the bubbles, to a large extent, depends on the initial
distance between them and on the magnitude of the surface tension. If the surface tension is
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Figure 11. Grid convergence test for the modi�ed pressure (�1=�2 = 103,
�1=�2 = 102, Re=35, Eo=125); time t=3:0.

high enough (correspondingly, the E�otv�os number is small), no merger happens, the bubbles
develop nearly ellipsoidal shapes and rise separately (see e.g. Reference [29]). Hence, in
order to simulate a merger process, we take comparably small surface tension coe�cient and,
to get the merger earlier, a small initial distance between the bubbles. Our non-dimensional
parameters for this test are Re=35, Eo=250, �1=�2 = 102, �1=�2 = 10 (Reynolds and E�otv�os
numbers are based on the diameter of the large bubble).
Figure 16 illustrates the merger process. Since the small bubble is located very close to

the large one, this lower bubble turns out to be in the wake of its upper ‘neighbour’ and
rises faster than that. In the process, two opposite signed vortices are created in the wake
of the large bubble. This produces a lower pressure region behind the large bubble and
generates �ow streaming into the symmetry line of the �ow. As a result, the front por-
tion of the small bubble becomes narrower and sharper. At time t=0:525, we see that the
head of the small bubble almost catches up with the bottom of the large bubble. In the
next moment t=0:6, the two bubbles merge into a single bubble. At this time, the interface
conjunction forms a cusp singularity that is rapidly smoothed out by viscosity and surface
tension.
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Figure 12. Relative change of bubble mass vs time (�1=�2 = 103, �1=�2 = 102, Re=35, Eo=125;
h= 1

20 ): ‘− · −’ - without reinitialization–correction, ‘—–’ - with reinitialization–correction.

The results compare well with the computations of Chang et al. [54], Tornberg [32] and
Unverdi and Tryggvason [29]. The results compare favourably with the numerical predictions
of Delnoij et al. [91] who found a qualitative agreement with available experimental data.
The dependence on time for the relative change of total bubble mass is shown in Figure 17.

The �uctuations in about 2% appear at the moment of the bubble merger. However, owing
to the reinitialization–correction procedure, the method quickly recovers the total bubble mass
and keeps the error of mass conservation within the predicted O(h2)-accuracy.

4.5. Rayleigh–Taylor instability

The Rayleigh–Taylor instability, associated with the acceleration of a heavy �uid into a light
one under the action of a gravitational �eld, is generic to a wide range of physical phe-
nomena, and many numerical simulations have been performed (see e.g. References [36, 92]).
Chandrasekhar [93] analysed the problem by means of the linear theory, which is applicable
in the early stages of instability development.
In our simulations we took the data as in Reference [50] (the same data were used by

Popinet and Zaleski [31]). Namely, the computational domain is the rectangle (0; 1)× (0; 4),
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Figure 13. Relative change of bubble mass vs time (�1=�2 = 103, �1=�2 = 102, Re=35, Eo=125;
with reinitialization–correction): ‘−−’—h= 1

20 , ‘− · −’—h= 1
40 , ‘—–’—h=

1
80 .

the viscosities of both �uids are equal to �1 =�2 = 3× 10−3 kg=(m s), the �uid densities are
�2 = 1:2 kg=m

3 and �1 = 0:17 kg=m
3, and the surface tension coe�cient � is zero. The initial

interface shape is given by the function y(x)=2:0 + 0:05 cos(2�x) (see Figure 18), initial
velocity �eld is zero, and the boundary conditions are no-slip on the top and the bottom
walls and free-slip on the vertical walls.
Figure 19 shows the development of the instability. As the heavy �uid penetrates the light

�uid, the interface begins to roll up along the sides of the spike giving the characteristic
mushroom shape. This phenomenon, known as the Kelvin–Helmholtz instability, is due to the
development of short wavelength perturbations along the �uid interface and parallel to the
main �ow. Our numerical predictions compare well with those of Puckett et al. [50] and of
Popinet and Zaleski [31]. The maximum mass �uctuation is approximately 0:06%, which is
better than in front-tracking based simulations of Popinet and Zaleski [31] but slightly worse
than in volume-of-�uid based computations of Puckett et al. [50] (although, our grid was 1:5
times coarser).
Figure 20 illustrates the instability development in the presence of small amount of surface

tension. The surface tension coe�cient was chosen to be smaller than the critical value for
which the �ow is stabilized. According to Chandrasekhar [93], for an initial perturbation
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Figure 14. Break-up of rising bubble; Re=700, Eo=500, �1=�2 = 103, �1=�2 = 102, triangulation
is based on rectangular grid with h= 1

80 , P1 elements for velocity, �t= h=2.

whose wavelength is �, this critical value is given by

�c =
�2(�2 − �1)g

4�2

In our case �=1, hence �c ≈ 2:6× 10−2; we took �=0:015. The regularizing e�ect of surface
tension is clearly seen from Figure 20: the surface tension decreases the growth rate of
the Rayleigh–Taylor instability, delays the development of the secondary, Kelvin–Helmholtz
instability, and makes the interface smoother and more compact. This is in a good agreement
with numerical observations of Lock et al. [63].
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Figure 15. Breaking bubble: relative change of bubble mass vs time; Re=700,
Eo=500, �1=�2 = 103, �1=�2 = 102, h= 1

80 .

4.6. Bifurcating jet

This test concerns the high-speed propagation of a horizontal viscous jet in a viscous medium.
The jet evolution is considered in the absence of gravity, but in the presence of surface
tension. The geometry consists of the rectangular domain (0; 3)× (0; 1) and the jet in�ow
boundary {(x1; x2)| x1 = 0; 0:456x260:55}. The initial velocity �eld is zero; the in�ow velocity
is horizontal and its magnitude evolves in time as 5(1 − e−2t). The prescribed boundary
conditions are the out�ow (zero tangential and normal stress) at the right side, the in�ow at
the jet in�ow part of the boundary, and the no-slip on the rest of the domain’s boundary.
We assume that both �uids have equal viscosity �. Then, the problem is characterized by

three non-dimensional parameters: the density ratio �2=�1, the Reynolds number Re=�2Ud=�
and the Weber number We=�1U 2d=�, where index ‘1’ corresponds here to the �uid around
the jet, index ‘2’ to the jet �uid, U is the magnitude of the in�ow velocity and d is the in�ow
diameter. According to the values of these parameters, diverse regimes of jet �ow can be ob-
served (see Reference [94]). Figure 21 illustrates the jet evolution with �2=�1 = 10, Re=5000
and We=250, which approximately corresponds to the so-called second wind-induced regime.
This is a high jet-velocity regime with relatively small surface tension coe�cient. As the �ow
starts, the interface front expands very quickly and undergoes the interfacial stress �uctuations
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Figure 16. Merger of two rising bubbles; Re=35, Eo=250, �1=�2 = 102, �1=�2 = 10, triangulation
is based on rectangular grid with h= 1

40 , P1 elements for velocity, �t= h=2.

which cause the unstable growth of short-length waves. Those waves could be suppressed by
the surface tension, but the interface is nearly �at in the vicinity of its frontal point, hence,
the surface tension (that is proportional to the interface curvature) becomes almost negligible
there; this results in the jet bifurcation. In our computations the jet break-up happens approx-
imately at time t=0:3 s at the distance 0:5=5d downstream, which is in excellent agreement
with the predictions of Danaila and Boersma [95]. Generally, the jet unbroken length is a
function of the dimensionless parameters of the problem. At later time, the jet branches start
to roll up due to the Kelvin–Helmholtz instability, and multiple secondary bifurcations as well
as drop formations can be observed (see Figure 21, bottom row). The qualitative behaviour
of the jet in our numerical simulation compares satisfactorily with experimental results, see
Reference [94].
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Figure 17. Merger of two bubbles: relative change of total bubble mass vs time;
Re=35, Eo=250, �1=�2 = 102, �1=�2 = 10, h= 1

40 .

Figure 18. Initial con�guration for Rayleigh–Taylor instability problem; the interface
is given as y(x)=2:0 + 0:05 cos(2�x).
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Figure 19. Rayleigh–Taylor instability with �=0; triangulation is based on rectangular
grid with h= 1

40 , P1 elements for velocity, �t=2h.

Figure 20. Rayleigh–Taylor instability with �=0:015; triangulation is based on rectangular
grid with h= 1

40 , P1 elements for velocity, �t= h.
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Figure 21. Jet bifurcation; Re=5000, We=250, �2=�1 = 10, triangulation is based on rectangular
grid with h= 1

80 , P1 elements for velocity, �t= h=2.

5. CONCLUSIONS

A uni�ed approach for the numerical simulation of unsteady two-phase �ows with free moving
interfaces has been presented. It essentially relies on the �nite-element spatial approximation,
the level-set interface representation and the operator-splitting temporal discretization. Such a
combination of the numerical techniques results in a very simple and cost-e�ective algorithm
that allows to simulate virtually all kinds of two-�uid interfacial �ows (bubbles, jets, waves,
�lms, etc.). Despite its computational simplicity, the proposed approach demonstrates a good
accuracy, which has been shown in diverse numerical tests (see also References [87, 96] where
the present method has been used for a detailed study of bubble dynamics and numerous
comparisons with experimental data have been done).
Unlike many existing numerical methods, the proposed approach is �exible enough to permit

the simulations of diverse �ow regimes ranging from the Stokes to highly convective �ows. It
allows for the modelling of �ows with breaking and merging interfaces, while maintaining a
sharp interface approximation throughout the computational process. The combination of the
�nite-element discretization and the level-set method makes it possible to model the inter-
face without introducing any arti�cial numerical parameters like the interface thickness; the
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interface can be localized precisely, which enables us to accurately compute the surface tension
force and the terms with discontinuous density=viscosity coe�cient in the discrete momentum
equation. We have also presented simple techniques allowing to obtain a 2nd-order accurate
curvature approximation and to maintain 2nd-order accurate global mass balance. The numer-
ical experiments show that the accuracy of the interface approximation and of the capillary
force evaluation has a dominating role in the simulations of interfacial �ows. This, possibly,
explains a good performance of the presented approach, in spite of the fact that the method is
formally only 1st-order accurate in time and in space. We have, in fact, compared the results
with those obtained by a 2nd-order-in-space method (this can be readily achieved via the
local mesh adjustment near the interface, see e.g. Reference [63]). The di�erence in accuracy
for the velocity �eld appears to be very small with the realistic mesh sizes, and almost no
di�erence can be seen in the interface shapes.
Finally, we may note that the method utilizes the simplest, piecewise-linear continuous

approximation for all unknowns (velocity, pressure, interface) on a single uniform grid which
is never changed in the process of computations and that the whole algorithm can be easily
parallelized owing to the nature of operator-splitting approach. The work on the extension of
the method to 3D case is currently under way, and the corresponding results will be reported
in forthcoming papers.
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